Scheduler Testbed
System Design

Eitan Frachtenberg and Fabrizio Petrini
Parallel Architectures Team
CCS-3 Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

3 August, 2001
Technical Report

Contents

1 Preamble

1.1 Objective o
1.2 Audience
1.3 Document Organization

2 Overview of Schedulers

2.1 Introduction to Gang-Scheduling
2.2 Dynamic and Implicit Coscheduling
2.3 Buffered Coscheduling
2.3.1 Overview
2.3.2 Scheduling
233 Example
2.4 Flexible Coscheduling
241 Overview e
2.4.2 Process characterization 0L
24.3 Scheduling
2.4.4 Characterization Heuristics,
2.5 Local Scheduling
2.6 First-Come-First-Serve Scheduling
2.7 The Parpar Gang-Scheduler,

3 Technical Description of RMS

3.1 Overview e
3.2 The Partition Manager (pmanager)
3.2.1 Resource Allocation
3.2.2 Communication With Node Daemons
3.3 The Node Daemon (rmsd)
3.3.1 Modeof Operation

3.3.2 Scheduling Mechanism
3.3.3 Communication With the RMS Host

4 Technical Design
4.1 General L
4.2 Architectural Overviewo
4.3 Scheduler Frameworko L
4.3.1 The machine manager
4.3.2 Thenodemanager
4.3.3 The program launcher
4.4 Implementation of Dynamic and Implicit Coscheduling
4.5 Implementation of Buffered Coscheduling
4.5.1 Local Schedulero oL
4.5.2 Communication Thread
4.6 Implementation of Flexible Coscheduling
4.6.1 Process Classification
4.6.2 Scheduling Implementation
4.7 Implementation of Local Scheduling
4.8 Implementation of FCFS Scheduling

4.9 Implementation of ParPar o000

5 Benchmarks
5.1 LANL Applications
5.2 External Benchmarks 0 o 0oL
5.3 Synthetic Benchmark oo oL o
5.4 Testing platform

6 Work Breakdown Structures (WBS)

25
25
25
26
27
28
28
29
29
30
30
32
32
33
33
33
34

35
35
35
36
36

37

1 Preamble

1.1 Objective

The Parallel Architectures & Performance Team at the Los Alamos National Labora-
tory investigates the issues that contribute to optimal application and computer system
performance on extreme-scale advanced architectures. As part of this effort, we are inter-
ested in studying the performance of job scheduling strategies for parallel systems, and
in particular the performance of gang-scheduling methods, which show a great promise
for enhancing system performance, utilization and even reliability for large scale systems.
To this end, we intend to implement a testbed for several current (and hopefully future)
gang scheduler algorithms, based on the RMS scheduler. The objective of this document

is to offer a high level description and implementation design for the testbed we propose.

1.2 Audience

This document is primarily designated to the implementers of the testbed’s modules. It
should be reviewed by other members of the team, as well as technical people from QSW.
We assume the reader of this document has some familiarity with the following subjects:
job scheduling for parallel and distributed architectures, inter-process communication

(IPC), communication concepts for parallel jobs, as well as a working knowledge of C++.

1.3 Document Organization

This document is organized as follows. Section 2 offers a brief introduction to gang
schedulers in general, and to those we plan to implement in particular. Since the testbed
is based on Quadrics’ RMS to a large extent, we detail some of the technical aspects
of RMS in Section 3. Next, we proceed to detail the technical design of the testbed in
Section 4 . Finally, Section 5 discusses the benchmarks that will be used to evaluate the

different schedulers.

2 Overview of Schedulers

This section describes the basic ideas behind gang-scheduling (GS), as well as details of
each of the gang-scheduling algorithms we intend to implement: buffered coscheduling
(BCS), flexible coscheduling (FCS), dynamic coscheduling (DCS), and implicit coschedul-
ing (ICS). Also, several basic schedulers could be implemented for comparison, and these
are described here as well. These algorithms are only detailed to the level required for
understanding the rest of this document, and their description represents by no means a
comprehensive or particularly exact one. The interested reader is referred to the original
papers wherever applicable. Note: during the rest of this paper, the terms CPU (central

processing unit) and PE (processing element) are used interchangeably

2.1 Introduction to Gang-Scheduling

Gang-scheduling [8, 15, 20] was introduced as an efficient way to multiprogram jobs on
a parallel or distributed computer by coscheduling processes (running all processes of
a parallel job concurrently). The basic idea behind gang-scheduling is that application
can not only space-share the compute resources, but also time-share them, the same way
that processes time-share in a uniprocessor machine running a multitasking operating
system. Typically, a gang-scheduling system consists of a master daemon (which can be
distributed) and node daemons that run on compute nodes (whether SMPs or unipro-
cessors). The master daemon allocates space resources for arriving jobs, and changes the
active resource allocations (a “multi-context-switch”) at a regular interval called times-
lice quantum, or simply timeslice. Thus, a resource allocation decision only impacts the
scheduling slot to which it pertains; other slots are available to handle other jobs and
future arrivals.

Another key concept of gang-scheduling is the allocation-matrix or Ousterhout-matrix.
An Ousterhout-matrix is a representation of resource allocation of space and time. Figure
2.1 shows an example of an Ousterhout-matrix for an eight-node uniprocessor cluster.

The diagram shows the resource allocation to seven jobs on an eight-node machine during

Node A

1
3

O, N W b 01 O

8 9 10 Time dot

Figure 2.1: An Ousterhout-matrix example

eleven time slots, with a cycle of four time slots. In slot 0 we see two jobs, using four and
two nodes respectively, while nodes 2 and 3 remain idle. On slot 2, the resource space
is fully shared between three jobs, and no nodes remain idle. From slot 4 and up we
see a repetition of the allocation pattern, except that job 2 terminates on slot 4, before
the context-switch, and does not run any more. It is relatively simple to increase the
utilization of the system using alternate scheduling, where jobs can “spill over” the next
time slot(s) if some or all of the resources they use are idle in those time slots.

Figure 2.2 shows the same allocation matrix using alternate scheduling. If the jobs
have a fine communication granularity, alternate scheduling is most effective if all the
processes of a job continue running, as is the case for jobs 2 and 4 in this example. Other
jobs, could have synchronization problems because not all their processes are running
(e.g. jobs 5 and 7). It is more common to find schedulers that would use partial alternate
scheduling to fit the request that only jobs that can have all their CPUs allocated will
continue to run on other timeslots.

Furthermore, it might scale poorly if the master daemon becomes a bottleneck. Gang-
scheduling is sometimes referred to as Explicit coscheduling, since the processes that are
required to be coscheduled are explicitly known to the system from the moment they
are launched as a single job. In contrast, The schedulers we describe in sections 2.2
use Implicit coscheduling, where the communication pattern of processes affects which
processes are coscheduled.

Gang-scheduling was shown to significantly increase system utilization, improve sys-

tem responsiveness and adapt well to varying workloads [8, 15]. On the other hand, gang-

Node A

3

O Fr N W b OO O N

8 9 10 Time dot

Figure 2.2: An Ousterhout-matrix example with alternate scheduling

scheduling introduces system overhead, because context-switching incurs cache penalties,
working set changes, and possibly communication buffer flushing. It is also not very well
suited to synchronization problems within a parallel job, thus allocation resources to
processes that are blocked, waiting for their peers. To address some of these problems,
several new techniques have been proposed. Sections 2.2-2.4 describe those methods we
intend to use for out testbed. We also intend to compare these scheduling methods with

some simple schedulers, which are described in sections 2.5-2.7.

2.2 Dynamic and Implicit Coscheduling

Dynamic coscheduling (DCS) was proposed as a way to reduce the amount of global
synchronization of coscheduling, and thus decrease the system’s overhead and improve
its scalability [19, 26, 27]. The philosophy behind DCS is demand-based coscheduling:

U coordination is achieved by observing the communication between processes, and

not by a master daemon,

0 Communication between processes is used to deduce which processes should be
coscheduled and to effect coscheduling. Thus, when a processes receives an incom-
ing message it immediately receives a priority boost. This can effectively cause an
immediate local context-switch to this process, depending on fairness policy and

system load, and

U Processes are otherwise scheduled normally by the operating system.

The reason this method results in robust coscheduling is its underlying assumption: if
a process receives an incoming message, its peer(s) must be currently running on other
nodes, so the process should be prioritized for immediate execution.

Several aspects and parameters can be tuned for different assumptions or workloads,
e.g. when to make a preemption decision [26]. The design of the testbed should allow
room for configuration and tuning of these parameters.

Like DCS, Implicit coscheduling (ICS) makes local scheduling decisions based on
monitoring communication activity [5, 6]. Processes waiting for a communication action
to complete use a spin-block mechanism to relinquish control of the CPU, where first the
process spins (actively waits) some time for the communication to complete, and then
blocks, which consequently causes a context-switch if another process is ready to run.
When a communication activity of a blocked message completes, it receives a priority
boost, much in the same way it would in DCS. The main difference is that DCS explicitly
treats every incoming message (not just those for blocked processes) as a demand for
coscheduling, causing an immediate scheduling of the receiving process as soon as it would
be fair to do so. Also, in DCS a waiting process always spins and does not block (it could
be preempted though, immediately when another process receives an incoming message).
In [26] it is claimed that while ICS is well-suited to “bulk-synchronous” applications
(those that perform regular barriers, possibly with other communication taking place in
between barriers), DCS is more suited for less-regular applications.

A comparative study of DCS, ICS, and other variations on implicit coscheduling
techniques is presented in [4]. These techniques include different actions for waiting
processes, as well as for those receiving messages. In some cases, the author finds that
simpler coscheduling mechanism can outperform ICS and DCS, depending on the OS
abilities. The design proposed in this document should be flexible enough to allow the
implementation of some of these variations, should we want to measure their performance
as well. On the other hand, this paper and others also study the effect of the local UNIX
scheduler on implicit gang-schedulers. We do not intend at this stage to modify the OS
kernel, so the comparison between different local-scheduling policies will be confined to

the operating systems available for our testing.

2.3 Buffered Coscheduling

2.3.1 QOverview

Buffered coscheduling (BCS) represents a different approach to coscheduling [10, 11, 12,
13, 21]. In BCS, local scheduling decisions are based on global information of the sys-

tem’s status, essentially converting an on-line problem of coordinating jobs to an offline
problem. Global knowledge of the system’s status can potentially be costly and unscal-
able, so BCS offers a technique for seamless integration of information exchange with the
scheduler. Although BCS has the potential to address many system-wide performance
and reliability issues, this document is mainly concerned with the parts relevant to this

design, i.e. the jobs scheduling subsystem.

2.3.2 Scheduling

In the BCS model, each timeslot has two phases, computation and communication. Dur-
ing the computation phase the current job runs normally, except that all the outgoing
communication is buffered for later execution. If the communication is of a blocking
type, the process is preempted and another process is chosen and scheduled (in a way
that will be explained shortly). The communication phase is divided into three parts:
first, an exchange of information occurs between the nodes, after which every node has
global knowledge of the information that pertains to it pending incoming- and outgoing-
communication, and possibly other information such as load, availability and status of
other nodes. During the second part of the phase, the communication between the nodes
is scheduled for optimal use of the network without exceeding the phase’s time limit.
Lastly, the messages are sent and received according to the schedule. It should be noted
that the availability of advanced network hardware can enable a communication phase
that is so fast, that several of those can fit in a timeslot. In that case, the model can
change to accommodate communication phases that service the currently running com-
putation phase, thus reducing the need for a premature context-switch.

To use the machine effectively, the computation and communication phases are over-
lapped, so that the communication phase for computation phase N runs concurrently
with computation phase N-+1. This requires that network interface card (NIC) have
its own processing capabilities, as is the case with the Elan NIC. Obviously, this only
makes sense when there are more than one job running, which is the typical case for

supercomputers. When only one job is running on a node, two strategies are available:

1. Continue with the BCS mechanism, sacrificing some idle time on the CPU while it

is waiting for blocking communication to go through the communication phase

2. Work in a dedicated mode, where messages are not buffered or scheduled, and no

exchange of information is done by the NICs.

This issue requires further investigation to determine the feasibility of each alternative.

- -

NIC |

P Timesot

0 1 2 3 5

Figure 2.3: Buffered Coscheduling example. Dashed arrows represent non blocking com-
munication messages; regular arrows represent blocking messages. The com-
munication phase in the NIC is divided in three parts: (T)otal exchange,
(S)cheduling and (C)ommunication.

2.3.3 Example

Figure 2.3 shows an example of buffered coscheduling on the first five timeslots of node
7 in the Ousterhout matrix shown in Figure 2.2. On the first time slot, the CPU of the
node runs job number 1’s process, while the NIC is relatively idle, since there were no
previous computation phases. The only thing it does is to receive a non-blocking message
from the process, and buffer it for sending in the next communication phase. In time
slot 1, Job number 3 is running in the CPU, sending (and buffering) two non-blocking
messages, while the NIC is going through the three steps of the communication phase:
total exchange of information with other nodes (which is not necessarily implemented as
a total exchange), scheduling communication (in this case, job 1 incoming and outgoing
messages), and executes the communication. We can see that a non-blocking message for
job 1 has been received, and will be waiting for it when it is next scheduled in time slot
3. During the next time slot job number 4 is running without communicating while the
NIC processes job 3’s communications. Job number 4 continues into the next time slot
due to the alternate scheduling, but does not complete it: it sends a blocking message
which causes its preemption the the next job in the queue, job 1. This job too performs a
blocking receive operation before completing the time slot, and is descheduled. Job three
then uses the rest of the time slots until a global context-switch causes its preemption.
During this time slots the NIC receives the message job 1 expects, so it can be re-launched

in time slot 5, as determined by the Ousterhout-matrix.

10

2.4 Flexible Coscheduling

2.4.1 Qverview

Flexible Coscheduling (FCS) is currently being developed as a research project at Hebrew
University by E. Frachtenberg, under the supervision of Dr. D. G. Feitelson. FCS aug-
ments gang-scheduling with dynamic process classification and local scheduling to better
handle problems arising from system heterogeneity and load imbalances. Applications
with fine-grained communication or synchronization suffer most from these conditions,
since some processes are often found blocked, waiting for their peers which could either
run on a slower platform or have a higher load then themselves. This in turn inflicts
performance penalties on the system (lower utilization and higher overhead if applica-
tions are constantly preempted) and the running jobs (higher turnaround time and less

responsiveness).

2.4.2 Process characterization

To address these problems FCS employs online process characterization and schedules

processes using this information. Processes are categorized into one of these three classes:

1. CS (coscheduling): These processes require coscheduling with their peers, and are

currently successfully coscheduled. We will see shortly how this success is measured.

2. F (frustrated): These processes require the synchronization gains obtained with
coscheduling, but coscheduling them is unsuccessful. These are typically those pro-
cesses that suffer for system heterogeneity of load imbalance, resulting for example

from uneven decomposition of the data set).

3. DC (don’t-care): These processes rarely synchronize, and can be scheduled in
almost any possible way without penalizing the system’s utilization. For example,

a job using a coarse-grained workpile model would be categorized as DC.

Another class of process is the RE (rate-equivalent) category, for processes that have low
synchronization requirements, but have coarse-grain load balancing, so they require the
same amount of normalized CPU time, even if not necessarily in the same time slots. For
all practical purposes, we characterize these processes as DC. Processes of the same job
will typically, but not always, be of the same class. Some local traffic patterns can create
subgroups of processes with their own synchronization patters. To allow for these cases,
and to avoid global exchange of information, processes are categorized on a per-process

basis, instead of a per-job process.

11

2.4.3 Scheduling

The principle behind scheduling in FCS is this: CS processes should be coscheduled
and should not be preempted; F' processes should be coscheduled but can be preempted
when synchronization is not achieved; and lastly, DC processes make no requirements on
scheduling. Like with BCS, the node daemon in FCS receives global context-switch mes-

sages from the master daemon, but also has an autonomy of its own. Algorithm 1 shows

Algorithm 1 Context switch algorithm for FCS
procedure context-switch (current-process, next-process)
begin
if current_process == next_process then return
switch depending on type of next_process
if CS then
run next-process for entire time slot
if DC then
let local 0S scheduler schedule among all
DC' processes for entire time slot, and if
there are no DC processes waiting to run,
allow local scheduler to choose from F' and
then C'S processes
if F then
loop for entire time slot
1) run next-process until it blocks for communication
2) Do until communication unblocks for next-process:
let local 0S scheduler schedule among all
DC processes for entire time slot, and if
there are no D(C processes waiting to run,
allow local scheduler to choose from F' and
then C'S processes

end

the basic algorithm of the node daemon upon receipt of a context-switch message. The
basic idea is to allow the local operating system freedom to schedule DC' processes ac-
cording to its usual criteria (fairness, I/O considerations, etc.), and also use DC' processes
as “Lego blocks” to fill in the gaps that F' processes have because of their synchronization
idiosyncrasies to gain better machine utilization. An F' process that waits for pending
communication should probably not block immediately, but rather spin for some time to
avoid unnecessary context-switch penalties. The fact that FCS collects communication
statistics for each process allows the scheduler to determine a competitive spinning time
on a per-process basis. Two more principles differentiate this scheduling method from
DCS and ICS: (1) An C'S process cannot be preempted before the time slot expires even

if an incoming message arrives for another process (CS processes have “proven” that

12

it is not worthwhile to deschedule them in their time slot). (2) The local scheduler’s
freedom to choose among processes in the DC time slots and F' gaps is affected by the
communication characterization of processes, which could lead to less-blocking processes

and higher utilization of resources.

2.4.4 Characterization Heuristics

FCS uses dynamic characterization of processes based on their communication behavior,
to continually adapt processes’ classification and associated parameters over time. The

local scheduler monitors four parameters for every process:

1. C¢s - The count of communication attempts (in and out) the process performed
while being coscheduled (i.e. scheduled as either C'S or F).

2. Cpc - The count of communication attempts (in and out) the process performed
while not being coscheduled (i.e. scheduled as DC).

3. Wes - The total amount of time spent waiting for communication attempts to

complete while being coscheduled.

4. Wpe - The total amount of time spent waiting for communication attempts to

complete while not being coscheduled.

Initially, when a process is launched, it is tagged as CS, and is scheduled as such for
a fixed number of time slots, while incrementing the Ccs and Wes counters. Then,
the process is tagged as DC for another fixed number of time slots while incrementing
the Cpc and Wpe counters. During this initial information-gathering step some short
processes might even terminate, which is why we first schedule them as C'S: This way
short jobs benefit from the benefits of coscheduling and thus possibly finish early. After
this period and for the entire lifetime of the process, the counters are updated and the

process scheduling class is determined using these principles:

O If the process rarely communicates (both Cog and Cpe are lower than a given
threshold), the process is either DC or RE and is classified as DC;

O Otherwise, If the process has relatively long periods of waiting for communication

to complete, it is of type F;

O Otherwise, If the process communicates significantly better while being coscheduled

than not (as determined by the ratio Cos/Cpc), the process is of type CS;

13

Short average wait | Long average wait
Low £¢< ratio DC F
High Z2< ratio cS F

Table 2.1: FCS Scheduling classification using communication information. Processes
that rarely communicate are automatically classified as DC.

0 Otherwise, the process is of type DC.

These principles are summarized in Table 2.1. The thresholds to determine what “low”

and “high” values are will be determined empirically.

2.5 Local Scheduling

Local, or uncoordinated scheduling is the most straight-forward approach to time-sharing
on a multi-computer, where no global control of resources is used. A central management
system may be used to launch jobs to nodes, but once launched, each node schedules
its processes by itself, typically using the UNIX kernel’s sched() function. Although
its simple and scalable, the attractiveness of this method is severely diminished when
considering the performance penalty it entails for parallel applications [5, 6]. We use
local scheduling as a base case to compare the performance of the different coscheduling
methods

2.6 First-Come-First-Serve Scheduling

First-Come-First-Served (FCFS) Scheduling can be considered as the opposite of local
scheduling: there is no time sharing among jobs, and only global resource allocations
are allowed. When a new job arrives, it is immediately launches its demand meets the

available resources, or queued until such resources become available.

2.7 The Parpar Gang-Scheduler

Parpar is a software-based gang-scheduler for BSD and Linux systems. It was designed
to work well with short time slice (= 1 sec.) and scale up to 256 nodes. Its basic archi-
tecture is similar to that of RMS (which is described in the next section), consisting of a
master daemon that controls resources and node daemons that attach jobs to resources
in a proper context, with several implementation differences. For example, Parpar can

use several efficient communication mechanism, like IP multicast and reliable datagrams

14

to broadcast synchronization messages (this low-latency low-overhead approach enables
the small timeslice values). Furthermore, Parpar can use different resource allocation
algorithms that are linked from an external library with a simple interface. Two such
algorithms were already implemented for it. Parpar’s modular design could possibly offer
simple integration of some of its components in RMS to allow comparison of implemen-
tation choices between the two schedulers, or as a shortcut to implementing features in

RMS. For a more detailed view of Parpar, the reader is referred to [1, 9, 14].

15

3 Technical Description of RMS

3.1 Overview

In this section we describe various technical aspects of RMS, and in particular those
that are relevant to job scheduling. We do not intend to use RMS for our prototype
implementation except for the initial launching of processes. Therefore, it is not required
to read this section to understand the technical design. In the future, as RMS integrates
more features that allow it to be extended with external schedulers, this section may

become more relevant.

An RMS cluster consists of management node(s) and compute nodes. Compute
nodes can be divided into mutually exclusive partitions so that each partition can have
different properties and policies for resource allocation, and several configurations can
be defined and switched to allow a different set of properties per partition (e.g., different
configurations can exist for day and night operations, allowing larger programs to run at
night). At least one node (which can be separate from the compute nodes) is designated
as a management node and holds the RMS database, which enables interfacing to the
system using standard SQL queries.

The RMS provides a single point of interface to the system for resource management.
It includes facilities for gathering information on resources (monitoring, auditing, ac-
counting, fault diagnosis, and statistical data collection) and for resource handling (CPU
allocation, access control, parallel jobs support, and execution, and scheduling). RMS
is implemented as a set of user-level UNIX commands and daemons that communicate
using socket daemons and access the database for storing or retrieving all the system
details. Some of the daemons also communicate with the UNIX kernel through the aug-
mentation of the kernel with a few system-calls. Of the set of daemons provided by RMS,
two are concerned primarily with parallel job launching and scheduling. The Partition
Manager (pmanager) is a per-partition daemon that runs on the management node. It

handles requests for job launching and termination, checks the privileges and priorities

16

pmanager L —T rmsd » rmsd » rmsd » rmsd
A
\ 4 \ 4 \ 4 \ 4
gdout rmsl oader I rmsloader I rmsloader I rmsloader
gder’
Management Compute Compute Compute Compute
Node Node Node Node Node

Figure 3.1: An eight-process program on four nodes

allowed for each job, manages and allocates resources within its partition, and schedules
the jobs. The RMS Daemon (rmsd) runs on each computing node in the system. It
loads and runs user processes (using the application loader rmsloader), creates commu-
nication contexts for the application, delivers signals, and monitors resource usage and
system performance.

Figure 3.1 shows how the system runs an eight-process job on four two-way SMP
nodes. First, a user invokes a program called prun on the management node to launch
her program, which in turn asks pmanager to allocate PEs and start the job on them.
The pmanager notifies the rmsd processes on the allocated nodes to invoke an rmsloader
process with the user’s program; rmsloader also directs the stdout and stderr streams
of the program to prun, which forwards it to the controlling terminal or output files.

The RMS scheduler allocates bozes (N nodes with a fixed number of PEs per node) to
jobs so that they may take advantage of the hardware support of the QsNet for broadcast
and barrier operations that operate over a contiguous range of network addresses. More
details on the process of resource allocation can be found in 3.2.

Each partition can have its own scheduling policy and parameters (such as timeslice

interval, time limit, etc.) The scheduling algorithm used can be one of the following:

1. Gang-scheduling (with alternate scheduling.)
2. Regular (local) UNIX scheduling with the addition of simple load balancing.

3. FCFS scheduling.

The next two subsections continue the description of pmanager and rmsd to the level of

detail required to understand the technical design in Section 4.

17

3.2 The Partition Manager (pmanager)

3.2.1 Resource Allocation

The partition manager holds information about the partition’s CPU and memory re-
sources and allocates them according to availability to scheduling policy. It should be
noted that RMS does not hold a representation of an Ousterhout-matrix. Rather, it holds
a list of all resources/jobs, whether allocated or not, and a list of the resources allocated
for the current timeslice only. Gang-scheduling and context switching is obtained by way
of changing jobs’ priorities, as will be explained below. We should start by describing

the basic data structures (C++ classes) that pmanager uses (in bottom-up order):

U Boz: A Box is a rectangular array of CPUs, where one dimension represents nodes
and another represents CPUs. For example, eight four-way SMPs can be repre-
sented by an 8x4 Box with a total area (total number of CPUs) of 32.

O BozPacker: A BoxPacker is a collection of Box instances, not necessarily of the
same dimensions. FExamples for BoxPacker usage are representation of the en-
tire cluster and representation of used/free CPUs per a timeslice. Together, Box
and BoxPacker offer services (methods) to allocate/deallocate CPU resources, fit

resources to requests and perform geometrical queries.

O Resource: A Resource hold all the information on resources allocated to a job, and
can be operated on in various ways. A resource contains (among other things) a list
of Segments, where each Segment contains a range of allocated nodes. A Resource’s
methods include all the set/get operations on the job’s run-time parameters (pri-
ority, time limit, memory limit, nodes in use, etc.) and status (running, queued,

blocked, etc.).

O Job: A Job class is a representation of a parallel application, and is similar to a
Resource (a Job contains a pointer to its allocated Resource). Note however that a
job does not have to have the same number of processes as CPUs in the Resource
(could be more or less). A job also contains scheduling-specific information, like

which partition it belongs to and its CPU allocation policy.

O Partition:This class holds partition-management information and methods, includ-
ing methods to report and update the partition’s status (e.g add nodes to it), and
holds machine and node information. This class is not very relevant to scheduling
issues, but it does contain information on the scheduler’s features (e.g whether it

support gang-scheduling).

18

U Scheduler: This is the main class for the scheduling aspects of the partition manger.
It contains methods for initiating a job and allocating resources to it, as well as
context-switching between jobs or preempting low-priority jobs as necessary. The

important processes of the Scheduler class are outlined below.

Pmanager loops indefinitely, waiting for messages from prun or the node daemons, or
for periodic timeslice wakeup to occur, and handles each of these events in a callback
function. When the pmanager receives a request to run a new job from prun, it undergoes

an allocation process which is shown in Algorithm 2. Note that when a job is marked

Algorithm 2 Allocation of a new job in pmanager
1) Verify all the following, or return error to prun:
Job has permissions to run
Partition allows parallel jobs or user is root
Partition is active or job is allowed to block till it does
Partition’s job queue length does not exceed limit
The required amount of rails (if any) is available

The resources requirement is legal (e.g. does not exceed max. CPUs)

2) Create a new resource for job

3) Generate Elan context for job

4) If allocating CPUs to job will exceed CPU usage limit and user != root then
mark job/resource as ‘‘blocked’’, or fail if request is immediate

else

mark job as ‘‘queued”

5) Make initial allocated of CPUs to job/resource

6) Schedule resources using Scheduler::scheduleResources()

as “blocked”; it will not change status until more resources become available (e.g. when
another job terminates). The check for available resources is made whenever a scheduling
event happens, as we will see shortly. Initial allocation of CPUs per resource (step 5)
uses the BoxPacker and Box classes to try to find a continuous range of nodes to allocate,
if possible, to allow exploitation of Elan’s hardware broadcast. If unavailable, Allocation
of disjoint node boxes will be given. If that too fails, and the partition supports gang-
scheduling, the system may try to allocate CPUs to the resource in a later timeslot,
or create a new one if necessary (this happens transparently as part of the scheduling
process).

Whenever a scheduling event occurs (e.g. expiration of a timeslot, arrival of a new
job or termination of an old one, suspending and resuming of jobs by the user), the
Scheduler’s scheduleResources() method is called (Algorithm 3). We note the following

properties of this algorithm:

19

Algorithm 3 Scheduler::schedulerResources()’s algorithm

1) Delete the allocation of resources to current timeslice and restart it
2) Build array of runable resources (e.g. not externally suspended)
3) If timeslice just expired then
increase timeslice count of queued and suspended resources
4) Sort resources according to the following criteria (in descending order):
- prefer requests submitted by root
- prefer the higher priority resource
- prefer the resource that has been waiting longer
- prefer jobs that are running or queued
- prefer the job that was submitted first
5) Loop 7 over sorted list of resources (higher priority first)
begin loop:
if CPUs were already initially allocated to r then
if r is “blocked” (usage limit exceeded) then
try to see if r can be unblocked, otherwise continue loop
try to allocate r’s CPUs, mark r as ‘‘suspended’ if already allocated
else if r will exceed usage limit then
mark r as ‘“blocked”
else if initial CPU allocation for 7 is successful then
allocate r’s CPUs
else no CPUs are available for r now, mark it as ‘‘queued”
end loop
6) If any changes to the scheduling were made then
instruct the rmsds to make the changes

20

U Every time a scheduling event happens, including timeslice expiration, the entire
process of sorting resources and allocating them to CPUs. This implies relatively
high overhead when the timeslice quantum decreases and/or the number of gang-
scheduled resources increases. This in part can explain the poor scheduler perfor-

mance that was observed in [17] for small values of timeslice quanta.

O Since the scheduler does not maintain an Ousterhout-matrix, gang-scheduling with
RMS is almost an implicit process. The circular nature of timeslot scheduling is
obtained by the prioritizing of resources. When all other things are equal, resources
are sorted by the amount of timeslots they used, so a round-robin effect is achieved.
Also, there is no fixing of the jobs that occupy the same timeslot, and in theory
there is not guarantee that the scheduling will repeat itself. In practice though,
when nothing else changes, when it comes to re-allocate jobs to the current timeslot,
the deterministic allocator would repeat its decision from the previous time those

jobs were allocated.

O Several events, (e.g. the addition or removal of jobs or change of priorities) can
change the entire allocation of jobs to timeslots, since the new sorted list of resources
can be modified enough to result in a completely different allocation. However, once

CPUs are allocated to jobs, they are never moved.

0 The default value for the CPU usage limit in an RMS partition is the available
number of CPUs in the partition. Therefore, normal (non-root) user jobs of the
same priority that together exceed this number will not actually be gang-scheduled:
The first first will run to completion while the others are blocked, then the second,
and so forth, till all the remaining jobs can be scheduled to run together. Therefore,
having the partition gang-schedule this job would require raising the usage limit to

some higher value or running them as root.

O A benefit of this algorithm is that we get partial alternate-scheduling for free: If a
job that run on timeslot ¢ can use the same CPUs in timeslot t+1 (after all eligible
jobs have been allocated), it will run on that timeslot. However, this will happen

only if all the jobs CPU’s can be allocated to it, and not just part.

Although this algorithm runs for every timeslice, note that the impact is minor if all
runable jobs fit into a single timeslot. In that case, reallocating the jobs would probably
not cause changes in the scheduling, and the node daemons will not be notified to make

changes, so jobs continue to run uninterrupted. The next subsection describes how the

21

‘ Field name ‘ Description ‘

cmd A specific command from an -
enumeration of all possible commands
rc Return code
nob Number of bytes to transfer
buf A character buffer with command’s data
ptr A pointer into buf for packing/unpacking

timestamp | Command’s timestamp

Table 3.1: The Cmd class

partition manager communicates with the node daemons when a change of scheduling is

due.

3.2.2 Communication With Node Daemons

RMS has a generic data structure for communicating messages from pmanager to rmsd
embodied in the Cmd class.

Table 3.1 shows the basic data members of the Cmd class. It also contains various
methods for packing and unpacking messages, as well as setting/getting data members,
returning error messages, etc. These commands are communicated from pmanager on
a communication tree, implemented in the class CommsTree. CommsTree represent a
quaternary tree, whose root typically represents the originator of messages and nodes
represent the message receivers - in our case the pmanager and rmsds respectively. Mes-
sages (Cmd instances) can be propagated down the tree, and acknowledgements are
propagated back up using the SocketServer class that manages it. The tree is dynam-
ically maintained by pmanager to reflect changes to the partition (availability of more
- or less - nodes). The SocketServer also handles some timeout/retry and flow-control
issues, as well as initialization of a partition’s tree. Every node in the tree, including
root, registers callback functions for the various commands it may get, in the form of
implementation of the virtual Cmd action data members. for example, rmsd implements
actions for the commands to start and kill jobs in the form of CMD::rpc_start() and
CMD::rpc_ kill().

22

3.3 The Node Daemon (rmsd)

3.3.1 Mode of Operation

As described above, rmsd’s role in RMS is responding to requests from pmanager. It
is first called from UNIX’s init process, launched by a daemon called rmshd, which
also takes care of re-running it, should it fail. After initializing the connection with
the communication tree and the Elan libraries, it enters into into a passive loop, where
callbacks are called for each of the registered actions it needs to take care of. These
include management commands from pmanager (e.g. shutdown, request for statistics,
etc.), scheduling commands from pmanager (e.g. suspend/resume job, etc.), and signal
handlers (e.g. handling of SIGCHLD for processes that terminate and periodic house-
keeping functions.) Another role of the node manager is to periodically save its state
to a local disk file, so in case of a crash it can reproduce it and re-launch the jobs that
were running on the node before the crash. However, applications should have their own

checkpointing mechanism to benefit from this feature.

3.3.2 Scheduling Mechanism

When a new job is assigned to a node, rmsd receives a Cmd structure that contains,
among other things, the new job’s ID and its Resource ID. This in turn is used to
create a LoaderDesc class and an RDesc class: the former is used to launch the program
and store process information in it, and the latter as a resource descriptor. After the
environment for the new process is set (Elan capabilities, environment variables, signal
handling, etc.) is set, rmsd fork()s and executes rmsloader, that in turn executes the
program. A destructor method also exists in these classes to stop (kill) a running job.
A scheduling command arriving from pmanager is handled in a simple manner. The
rpc_schedule() callback parses all the scheduling requests from the Cmd structure, in-
cluding the Resource IDs. It finds the appropriate RDesc class for each resource, and lets
its RDesc::schedule method handle the request by calling the appropriate system calls.
Both types of activities use access to the UNIX/Linux kernel by way of RMS system
calls the were added to the kernel. Table 3.2 shows the relevant RMS system calls.

3.3.3 Communication With the RMS Host

There are three ways in which rmsds convey messages to the RMS host (either the

pmanager or to update the database):

23

System Call Interface

Description of Function

int rms_prgcreate (int id, Creates a new program description.

uid_t uid, id is a job identifier - invariant across nodes

int cpus); utd is the user identifier that owns this program

cpus is the local number of CPUs for this program

int rms_prgdestroy (int id); Destroys an existing program description.
int rms_prgsuspend (int id); Suspends all the processes of a running program.
int rms_prgresume (int id); Suspends all the processes of a running program.
int rms_prgsignal (int id, Sends a signal to all processes of a program.

int signo); | signo is the signal number

Table 3.2: RMS system calls for scheduling

1. Replying to commands: As described in 3.2.2, the Cmd class allows for a return
code to be filled with a command’s reply, with either a success or an error code.
Almost all commands cause the return of this code. Furthermore, a command
callback in rmsd can fill the Cmd buffer with its own return data and send it back
in the reply. For example, the request-for-statistics callback returns the required

statistics to pmanager this way.

2. Sending Cmds to pmanager. There is a separate thread that runs in rmsd, in an
object called NodeStats, that periodically sends statistical information to pman-

ager.

3. The last method of communication is through the Event class. This class is mainly
used to log errors and messages in the RMS database. The Event class itself is an
encapsulation of the Cmd class, and has similar abilities, but is used solely to post

events in the database or Pandora.

24

4 Technical Design

4.1 General

Since our proposed testbed has several nonstandard requirements, we will not be able to
base our schedulers on the existing RMS infrastructure without modifying it extensively.
Furthermore, since we may expand our testbed requirements in future research, and
need a degree of flexibility from the scheduler that RMS was not designed to offer. We
therefore intend to implement a rudimentary scheduler framework ourselves, with as little
intervention with RMS as possible. The next section describes the general architecture of
this framework. Sections 4.4-4.9 cover the implementation details of each of the proposed
schedulers. In cases where two implementation alternative exists and none has a clear
advantage over the others, both alternatives are presented. Note: some parts of the
design rely on process priorities. Whenever compare priorities, we refer to them in the
intuitive way rather than the UNIX way, i.e. a process is preferred if it has a higher

priority (in UNIX, a negative priority is preferred to a positive priority).

4.2 Architectural Overview

We would like our framework to have the ability to run independent jobs in a normal
manner, but retain control of their communication behavior in a way that is transparent
to the applications but visible to the scheduler. Our main limiting factor in the existing
system software is that RMS was not designed to allow one process control of another
process’ communication. The main idea behind our testbed is therefore to ‘cheat’ RMS
into thinking all the jobs in the system are actually one application, and these exchange
information through the use of helper threads running on the NICs. The ’single job’
actually contains independent application jobs, as well as two types of schedulers, as will
be explained below.

We try to follow these guidelines in our design

25

0 User-transparency: Applications need not be changed, and regular users should not
need to change their mode of work. Applications will only need to be re-linked if
they statistically link with Quadrics communication libraries. The only difference

will be in the application launching mechanism.

O Portability: The testbed should be portable to any machine that supports Quadrics,
independent of operating system. This would enable us to make the tests in different
environment, but also poses a limit on the changes that can be made: The OS kernel

and user applications should remain untouched.

0 Extendability: Since this is a research project, we may come up with new scheduling
mechanisms over time. The system should use simple, clean interfaces and export

as much of the scheduling mechanism as possible, to allow easier future extensions.

0 Minimal intervention: For reasons of portability and ease of implementation and
maintenance, it is best that we do not modify RMS or any other of the existing

system software.

O Performance: The testbed should incur as little overhead as possible and strive
for best scheduler performance so that the measurements can produce meaningful

results.

4.3 Scheduler Framework

Our system consists of a single wrapper application that will run different executables,
all having the same Quadrics capability, allowing them to communicate among them-
selves. This “application” can actually be a simple shell script run with prun, that in
turn executes one of three programs, depending on its RMS NPROC and RMS RANK
environemt variables. These three types of executables consist of a machine management
(MM) process, node managament processes (NM) and program-launcher processes (PL).
Generally, the MM is in charge of the initial allocation of resources to programs and the
coordination of the NMs; the NM are responsible for local scheduling on each node and
communicate with the MM and the PLs; the PLs’ only function is to fork() and execute
new applications, and report back when these terminate. These processes communicate
with each other through helper threads that each run on the Quadrics NIC. This way, the
communication incurs almost no penalty to the compute processes, and can benefit from

Quadrics’ network advatanges, like fast collectives and communication that requires no

26

intervention from the main CPUs. The functions of each process and their help threads

is detailed in the following subsections.

4.3.1 The machine manager

The machine manager has two roles: the dispatching of new jobs and initial allocation of
resources to them, and the coordination of node manager through heartbeat messages.
We intend to feed the workload of jobs to the MM using a workload file, with a simple

format that describes, in each line, the following paramaters:
1. Time to run the application (in some predefined units).
2. Number of PEs the application requires.
3. Command line of application to run, including parameters for the application

The MM reads this file, which is sorted by application start time (Item 1), one line at
a time, and sleep()s until the time the application should be launched or a heartbeat
message should be sent. It would then wake up to perform the communication, and
possible to read the next line of the workload file, before going back to sleep. It can also
be awaken by a message from one of the NMs, announcing the termination of a process.

For initial allocation of resources, we intend to use the buddy-tree allocation algorithm
[20]. The ParPar scheduler has a software module that can be use for this puprose
with relative ease. It’s generic design allows for plugging into different schedulers and
use various allocation schemes. It is important though that we keep its internal data
structures updated by forwarding to it information on the status of the nodes and jobs.
This will be done by propagating the appropriate messages (e.g. process termination)
from the NM to the MM, which will then call the module’s appropriate callback function.

Communication with the node manager is performed through helper threads that run
in the Elan NIC. These threads can broadscast information to the NMs (e.g. new jobs
or heartbeat message), and receive messages from the NMs (e.g. process termination
notification).

At this stage of the testbed design, we do not address the important issue of fault-
tolerance. One of the issues that we do not address right now is that the MM provides a
single point of failure for the machine, and if this process fails for whatever reason, the
entire testbed becomes unusable. In the future, we may solve this by initally allocating
some spare process that can become the MM should the original one fail. These can
even run on other nodes, but we must implement a means to transfer the MM’s internal

information to it by regular checkpoints.

27

4.3.2 The node manager

Node managers are responsible for the launching and scheduling of processes on each
node. For simple gang-scheduling, the role of the NMs is limited to excecuting commands
issued by the MM: launching and preempting jobs. With the other scheduling schemes,
where local scheduling is made based on locally-collected information, the NMs will
perform the information collection and the local scheduling decisions.

The NMs will hold a representation, through messages from the MM, of the Ousterhout-
matrix information pertaining to their node. This will allow them to know which pro-
cesses to run on a context-switch, and also to make more informed local-scheduling
decisions. For some of the scheduling schemes, the NM also requires information about
communication among the processes. Information regarding local processes will be gath-
ered by augmenting the ADI level of the MPI library to inform the NM of relevant
communication events. A small library using BSD message queues was implemented
for this purpose. For information regarding remote processes, the NM will use its help
thread in the NIC to exchange information with remote NMs at regular intervals. For
more details on this mechanism, see 4.5.

For sake of implementation simplicity, we intend to run one NM per PE (as opposed to
per node). This may make local scheduling slightly less efficient, but will make initial job
allocation and the implementation of the Ousterhout-matrix mechanism much simpler.
At a future point, we may reconsider this detail if siginificant performance improvements

can be gained by having a single NN per SMP node.

4.3.3 The program launcher

The program launcher has a very simple role: execute commands from the NM to launch
programs. Each PL is associated with one NM with which it communicates through help
threads. The number of PLs determines in effect the maximum level of time sharing we
allow in the system, since a program can only be launched if an available PL exists.

An available PL simply waits for an event from the NM, giving it the details of a
program to run (command line, etc.), and then fork()s, and exec()s the program. It is
important that the PL closes all the open Quadrics handlers it has before executing the
user program, so that they become available to the program. Further, some changes are
required to the MPI_Init() call of the MI library, to trick application to see a world
of MPI processes that consists only of their peer processes, and not all the NMs, PLs,

and running applications. This in turn requires that information about the program!

!Specifically, information on the program’s row in the Ousterhout-matrix

28

be available to the MPI layer. This can be done by the NM posting this information in
some shared-memory region where it can be read by all programs.

When the user process terminates, the PL, which has been blocked waiting for it,
wakes up and re-establishes the connection with the NM. At this point, it will notify the

NM of the process termination and becomes available for a new program again.

4.4 Implementation of Dynamic and Implicit Coscheduling

Dynamic and implicit coscheduling are for the most part priority-based scheduling schemes,
where processes’ priority is dynamically updated based on their communication behavior.
The main role of the NM for these schedulers is therefore not to actually schedule and
deschedule processes, but to modify the priorities and let the local UNIX scheduler do
the rest. To that end, there is no point in heeding to the MM’s heartbeat commands,
and these can be ignored or discarded all-together (or not sent at all). Another impor-
tant implementation detail of the NM for DCS is that whenever an incoming message
arrives for a non-running process, its priority should be boosted to cause its execution
at the soonest time it would be fair to do so. This should be done by notification of
incoming messages, either at the MPI level or at the helper-thread level (TBD). Unlike
the normal gang-scheduling operation, processes are never suspended; rather, they are
preempted when another process gains priority over them (the local UNIX scheduler will
gradually lower running processes’ priorities). Lastly, we should make some modification
to the communication library (MPI), so that it always spins when waiting for a waiting
message in DCS, or spin-block in ICS (This are already implemented to some extant
at the Elan library level). Other variations, as discussed in 2.2 and [4], can be readily

implemented once these three modifications are performed.

4.5 Implementation of Buffered Coscheduling

There are two different parts of BCS that need to be implemented: the local scheduler
in the NM, and the communication strobing, in the NM’s helper thread running on the
NIC. The former is relatively simple to implement under the suggested framework, while
the latter is more complicated, requiring complex communication code to be run on the
NIC’s processor, and a sophisticated algorithm for the exchange of information with other
NICs. This algorithm is the subject of future research, and will not be detailed in this
document. Note that scheduling decisions are only made and carried out by the local

scheduler. However, these decisions are based on information processed and provided by

29

the communication thread, as is outlined below.

451 Local Scheduler

For the local scheduler, we would need to implement the following features:

1. All the commands received from the MM, including the heartbeat scheduling com-

mands, should be processed as usual.

2. Information from the communication layer should be received and acted upon as
fast as possible, especially if the process has issued a blocking communication at-
tempt. In this case, the NM should preempt the process and schedule another

process.

3. When making scheduling decisions, the NM should take into account the commu-
nication status of processes (blocked/ready). When preempting a process, it can
choose the next process from the Ousterhout-row, or just let the UNIX scheduler do
its job otherwise. In that case, we must ensure that previously preempted processes

are not in suspended status.?

4.5.2 Communication Thread

In BCS, NM’s helper thread receives the extra role of executing the communication phase
of BCS. As described in 2.3.2, the communication phase is divided in three stages, and
one of the modifications required to the thread is to schedule the different stages (using

a timer). Let us consider each stage separately.

4.5.2.1 Information Gathering and Exchange

In the first stage, information about processes’ communication is gathered. This is simple
to implement by leaving most of the communication mechanisms intact and making only
two minor changes. First, we must delay the execution of message sending: The Elan
card and driver are designed to accept message-buffers DMA descriptors as a compact,
fast interface to sending messages [22, 23, 24|. All we need to modify is to make sure
the Elan thread does not dequeue and execute these messaging commands, but rather
they are passed to the NM via shared-memory. Then, we must notify the scheduler (NM)

2By default, the NM suspends preempted processes. If we want the UNIX scheduler to run such
processes, we should either send them a SIGCONT signal, or change the default NM behavior so
that it lowers processes’ priorities instead of suspending them.

30

immediately of blocking messages, so that it can preempt the running process if required.
This is given almost for free using the communication mechanism we described in ?7.
At the end of this stage, a logical total-exchange of information between all par-
ticipating nodes is performed, so that every node has complete knowledge of pending
incoming- and outgoing- messages. The helper thread will read all the local information
to be exchanged from the NM’s memory (they share the same address space). Algorith-
mical aspects of this total-exchange will be researched in the future, and therefore are
not detailed here. However, initially we could use the following representation and data
exchange: We will use an N x N matrix, where N is the number of NICs in the system.
The N;; cell contains the total amount of data that NIC 7 needs to send to NIC j.
Therefore, in an initial implementation of the total-exchange, each NIC 4 can broadcast
the the i-th row and receive the i-th column. Later implementations will minimize the
amount of communication and schedule the broadcasts to minimize network contention.
This stage is also a good point to hook a fault-tolerance mechanism. A distributed
algorithm can use the information exchange to detect which nodes are not responding,
report them to the NM, which in turn can report to the MM for re-allocation of resources.
It can also be a good point in time to occasionally checkpoint the network status, which
together with memory checkpointing can offer restoring capabilities for crashed processes.
The discussion of the details of such a fault-tolerance mechanism are beyond the scope

of this document, and may be addressed at a later time of the design.

4.5.2.2 Communication Scheduling

In the second communication stage, the data to be sent is scheduled by each Elan thread,
using a distributed algorithm that ensures global agreement on sending order, and min-
imizes the amount of communication and network contention. This too is a research
subject for future implementation. As an initial implementation, we can employ a sim-
ple, non-optimal algorithm. For example, we schedule the communication in two parts
where first, all the odd-numbered NICs send to even-numbered NICs, and in the second,
the reverse traffic takes place.

The product of this scheduling should result in a list of pointers to the DMA descrip-
tors, sorted by the order of the scheduling. If feasible, we may actually sort the original
list of descriptors instead of pointing to it (remains to be tested). Also, we can limit
the amount of incoming messages by limiting the amount of requests-to-receive messages
we disseminate at the information exchange stage. This way, we can guarantee that the
amount of incoming data will not be so large that the time to receive it would exceed

the timeslot.

31

4.5.2.3 Communication Execution

In the last stage, the scheduling decisions made in the previous stage are executed. If
the previous stage sorted the original descriptor list, then all that is left is for the NM’s
helper thread to scan this list and send appropriate messages to the applications’ helper
threads. These in turn will send their messages from their own address space. We have
noted in our experiments that we may keep the communicating processes in a running
state, but without busy-wiating (i.e. communication is interrupt-driven), and the kernel
will do a rather good job of overlapping the communicating processes with the currentl
computing task. The NM can abort this stage before all the messages have been sent
if the time allocated to it does not suffice for the amount of traffic. In that case, the
thread just keeps the remaining list of descriptors, and passes it forward to the next
communication phase.

Another important role of this stage is the releasing of blocked processes: When an
incoming message or ACK arrives for a process that was blocked waiting for it, the local-
scheduler should be notified as soon as possible so that it can re-schedule the blocked

process when appropriate.

4.6 Implementation of Flexible Coscheduling

Flexible coscheduling contains two logical parts that require special attention, processes
scheduling and process classification. Both parts are implemented and integrated with

the NM, and gather process-communication information from the communication layer.

4.6.1 Process Classification

All the information required for the dynamic process classification can be easily gathered
by the communication mechanism By adding the appropriate hooks the the MPI ADI
layer. we also require a method to store the new process-relevant information and update
it frequently. We can achieve that by enhancing the LoaderDesc class (see 3.3.2) to
contain the extra information fields, along with the methods to calculate and update
them. Such fields can include the process class and the time it was last set, how long
has it been spinning, what is its average spin time and how long is it allowed to spin,
etc. The methods to update this data include the classification formulae described in
2.4.4 and take into account the initial period until the process’ class is stabilized. The
most natural place to call these update routines would be in the housekeeper() function,

whether when invoked by a timer event or by a communication event.

32

4.6.2 Scheduling Implementation

The invocation of the scheduling mechanism in FCS can be triggered by three types of

events, all having an appropriate callback in our infrastructure: A global context-switch

event (heartbeat message), a process waiting for synchronous communication and a pro-

cess unblocking for same (processes should not actually block for synchronous communi-

cation but rather spin.) In effect, the termination of a process will also cause a scheduling

decision, but this will be carried out by default by the UNIX scheduler, picking any other

process as outlines below. The following principles apply for process scheduling:

1.

When a heartbeat message arrives for a C'S or F process, its priority is raised to
the maximum, so that it has exclusive use of the processor. When a heartbeat

causes the descheduling of this process, its priority is returned to the previous one.

. If an F process spins for more than its allotted spin time, its previous priority is

restored, so that the UNIX scheduler can preempt it and run another process in its
stead. However, as soon as it is unblocked by the network layer, its priority should

be set back to the maximum, if still within its timeslot.

. When a DC time slot starts, marked by a heartbeat message that schedules a DC

process, it is ignored by the NM. All the scheduling is done by the UNIX scheduler.

. To ensure Processes are scheduled properly during DC' timeslots and F' gaps, pro-

cesses are divided into three groups of priorities (below the maximum). DC pro-
cesses belong to the highest group, F' processes run in the second group, and C'S

have the lowest priority.

By integrating these priority manipulations into the NM (which is also required in 4.4),
we can get implement FCS with little effort using the help of the UNIX scheduler.

4.7

Implementation of Local Scheduling

The implementation of local scheduling is particularly simple in our framework. We

simply disable all the scheduling functions of the NM, except for initial launching of

jobs.

4.8

The local unix scheduler with do the rest.

Implementation of FCFS Scheduling

The implementation of FCFS scheduling is relatively simple in our framework. All that

is required is to set the amount of rows in the Qusterhout-matrix to one (no parallelism),

33

and queue all the jobs that cannot be immediately allocated, retrying to allocate resources
for them whenever a previous job completes. This will require a simple implementation

of a queueing mechansim in the MM.

4.9 Implementation of ParPar

The implementation of ParPar over Quadrics would require two significant changes. The
first is to replace the internal communication layer between the master daemon and the
node daemons to work over Quadrics. This in turn implies that the ParPar application
has a network capability, and may require that we launch it with prun, much in the same
way we plan for the MM and NMs. The other issue to be addressed is the creation of
proper capabilities for newly-launched application. This is a rather delicate subject, and

will require consultation with Quadrics developers and RMS code.

34

5 Benchmarks

Part of any testbed is the set of measurement tools used to test and compare the various
alternatives. We intend to use three types of tests for evaluating the schedulers: running
a workload consisting of typical LANL applications; running a workload consisting of
externally developed benchmark applications, and running a synthetic benchmark design

explicitly to measure the scheduler’s performance.

5.1 LANL Applications

To test the viability of different schedulers for the lab, we intend to run several appli-
cations that are representative of the lab’s production environment. These applications
are mainly from the field of 3D fluid dynamics, and consist of SAGE, SWEEP3D, and
several others. The workload model to be used for these applications will be defined in
the future, after further study of the current site workloads. However, the reader should
keep in mind that these applications are usually not run as time-shared, and exploit most

of the machine’s physical resources.

5.2 External Benchmarks

There are a few suites of parallel application benchmarks that are used by the research
community, and we could potentially use some of these to compare the different sched-
ulers. Notable benchmarks suites in the field are the NAS NPB-2 [7, 2] suite from NASA
Ames center, and the SPLASH [25] and Splash-2 [3, 28] suites from Stanford. When the
testbed is completed, we will review these benchmarks and choose the most appropri-
ate suites. Note that these were designed with hardware-performance benchmarking in
mind, and not so much system-performance, where the scheduler has an immense effect.
Therefore, a study of the current state-of-the-art in workload modeling will probably also
be required to run applications from these suites concurrently in a realistic way, and not

as stand-alone applications.

35

5.3 Synthetic Benchmark

In a recent research work by Dr. D. Feitelson and E. Frachtenberg, a new benchmarking
tool was developed to measure specifically the performance of coschedulers. This tool
is based on the model presented in [16], and is a synthetic benchmark that launches
parallel jobs of different characteristics: communication granularity and type, size of
job, resource requirements, etc. It uses the workload model developed in [18] to create
realistic workload for any machine configuration and different loads. It was designed with
homogeneous and heterogeneous clusters in mind, and can simulate different CPU speeds
even on homogeneous clusters. A visualization tool exists that can visually illustrate the
scheduling decisions made during the tested scenario. This tool can be extended to
work with any application (and not only the benchmark application), if the network and

scheduling layer of the nodes is slightly modified to log the required information.

5.4 Testing platform

The basic testing platform we intend to use for the tests is the 16-node ’crescendo’ cluster.
Each node in this cluster will contain two 1-GHz Pentium III processors, with 1GB of
ECC RAM, a 66 MHz 64-bit PCI bus, and an Elan and Ethernet network connections.
At some point we may modify some of the nodes by upgrading or downgrading them if we
intend to measure performance in an heterogeneous cluster. We may also perform some

measurements on other LANL Quadrics clusters, if such become available for testing.

36

6 Work Breakdown Structures (WBS)

TBD....

Create framework application (MM, NMs, PLs)

Create helper threads for MM and NMs, test communication
Create helper threads for PLs and NMs, test communication
Implement protocols for helper threads (except strobing)
Code MV, including rm_ dynbt

Implement PLs, inc. MPI cheat

Test and debug application launching

Implement Heartbeats

. Full GS - test and debug

10. Implement MPI to NM protocol

11. Implement FCS and others

© 00 J O Ot = W N =

12. Implement benchmarks

13. Measurements

37

Bibliography

[1]
2]
[3]
[4]

[5]

[6]

[7]

18]

[9]

http://www.cs.huji.ac.il/labs/parallel /parpar.shtml.
http://www.nas.nasa.gov/Software/NPB/.
http://www-flash.stanford.edu/apps/SPLASH/.

Cosimo Anglano. A Comparative Evaluation of Implicit Coscheduling Strategies for
Networks of Workstations. In Proceedings of the Ninth International Symposium on
High Performance Distributed Computing (HPDC 9), Pittsburgh, PA, August 2000.

Andrea C. Arpaci-Dusseau, David Culler, and Alan M. Mainwaring. Scheduling
with Implicit Information in Distributed Systems. In Proceedings of the 1998 ACM
Sigmetrics International Conference on Measurement and Modeling of Computer
Systems, Madison, WI, June 1998.

Remzi Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Amin Vahdat, Lok T. Liu,
Thomas E. Anderson, and David A. Patterson. The Interaction of Parallel and
Sequential Workloads on a Network of Workstations. In Proceedings of the 1995
ACM Sigmetrics International Conference on Measurement and Modeling of Com-
puter Systems, pages 267-278, Ottawa, Canada, May 1995.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63-73, Fall 1991.

Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for
Fine-Grain Synchronization. Journal of Parallel and Distributed Computing, 16(4),
1992.

Yoav Etsion and Dror G. Feitelson. User-Level Communication in a System with

38

[10]

[14]

[16]

[17]

Gang Scheduling. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium 2001, IPDPS2001, San Francisco, CA, April 2001.

Fabrizio Petrini and Wu-chun Feng. Buffered Coscheduling: A New Methodology
for Multitasking Parallel Jobs on Distributed Systems. In Proceedings of the Inter-
national Parallel and Distributed Processing Symposium 2000, IPDPS2000, Cancun,
MX, May 2000.

Fabrizio Petrini and Wu-chun Feng. Improved Resource Utilization with Buffered
Coscheduling. Journal of Parallel Algorithms and Applications, 2000. Accepted for

Publication.

Fabrizio Petrini and Wu-chun Feng. Scheduling with Global Information in Dis-
tributed Systems. In Proceedings of the The 20th International Conference on Dis-
tributed Computing Systems, Taipei, Taiwan, Republic of China, April 2000.

Fabrizio Petrini and Wu-chun Feng. Time-Sharing Parallel Jobs in the Presence of
Multiple Resource Requirements. In 6th Workshop on Job Scheduling Strategies for
Parallel Processing, Cancun, MX, May 2000.

Dror G. Feitelson, Anat Batat, Gabriel Benhanokh, David Er-El, Yoav Etsion, Avi
Kavas, Tomer Klainer, Uri Lublin, and Marc Volovic. The ParPar System: a Soft-
ware MPP. In Rajkumar Buyya, editor, High Performance Cluster Computing,
volume 1: Architectures and systems, pages 754-770. Prentice-Hall, 1999.

Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsiveness with
Gang Scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer

Science, pages 238-261. Springer-Verlag, 1997.

Dror G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job
scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 1495 of Lecture Notes in Computer Science,

pages 1-24. Springer-Verlag, 1998.

Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll, and Wu chun Feng. Gang
Scheduling with Lightweigth User-Level Communication. In 2001 International Con-
ference on Parallel Processing (ICPP2001), Workshop on Scheduling and Resource
Management for Cluster Computing, Valencia, Spain, September 2001.

39

[18]

[19]

[23]
[24]

[25]

[26]

[27]

[28]

Uri Lublin. A workload model for parallel computer systems, 1999. Master’s thesis,
Hebrew University, 1999. (In Hebrew).

Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. A
Closer Look At Coscheduling Approaches for a Network of Workstations. In Eleventh
ACM Symposium on Parallel Algorithms and Architectures, SPAA’99, Saint-Malo,
France, June 1999.

J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proceedings of
Third International Conference on Distributed Computing Systems, 1982.

Fabrizio Petrini, Federico Bassetti, and Alex Gerbessiotis. A New Approach to Par-
allel Program Development and Scheduling of Parallel Jobs on Distributed Systems.
In International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), volume I, pages 546-552, Las Vegas, NV, July 1999.

Quadrics Supercomputers World Ltd. Elan Kernel Communication Manual, Decem-
ber 1999.

Quadrics Supercomputers World Ltd. Elan Programming Manual, January 1999.
Quadrics Supercomputers World Ltd. Elan Reference Manual, January 1999.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Architecture News, 20(1):5-44.

Patrick Sobalvarro, Scott Pakin, William E. Weihl, and Andrew A. Chien. Dynamic
Coscheduling on Workstation Clusters. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture
Notes in Computer Science, pages 231-256. Springer-Verlag, 1998.

Patrick Sobalvarro and William E. Weihl. Demand-Based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors. In Proceedings of the 9th International
Parallel Processing Symposium, IPPS’95, Santa Barbara, CA, April 1995.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, , and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer

Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

40

